A promising new way to inhibit cholesterol production in the body has been discovered, one that may yield treatments as effective as existing medications but with fewer side-effects.

In a new study published in the journal Cell Metabolism, a team of researchers from the UNSW School of Biotechnology and Biomolecular Sciences, led by Associate Professor Andrew Brown, report that an enzyme - squalene mono-oxygenase (SM) - plays a previously unrecognised role as a key checkpoint in cholesterol production. The team included doctoral students Saloni Gill and Julian Stevenson, along with research assistant Ika Kristiana.

SM is one of at least 20 enzymes involved in the assembly line when cholesterol is made throughout the body but only one - HMG-CoA reductase (HMGR) - is currently targeted by medications to lower cholesterol levels in the blood.

"The class of drugs most commonly used to lower cholesterol - statins - is the blockbuster of the pharmaceutical world and works by inhibiting HMGR," says Professor Brown.

"But HMGR is involved very early on in the assembly line, so inhibiting it affects all the other steps down the line - and other useful products it provides - and that can give rise in some people to unwanted side-effects, such as muscle pain.

"What's exciting about this previously overlooked SM enzyme is that it acts as a checkpoint much further down the assembly line, which should mean that it can be more specifically targeted at cholesterol production instead and leave the early part of the assembly line undisturbed."

Read the full story in the Faculty of Science newsroom.

Media contacts: A/Prof Andrew Brown | 02 9385 2005.

Faculty of Science media liaison, Bob Beale | 0411 705 435.